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Discrete velocity random motion in an external field
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We consider the effects of an external constant force on the one-dimensional transport of a particle whose
velocity stochastically fluctuates between two fixed values,6v. Transport in the presence of a single trap is
analyzed in detail. It is found that in the long time limit the trapping probability is decreased compared to that
for the overdamped diffusion by the factor 1/(11vd /v) wherevd is the average drift velocity.

PACS number~s!: 05.40.Jc, 05.60.2k, 02.50.Ey
en
ie
a
ne
g

e

ing

id
n
d
on
nia
re
tio
a-
fo
is
o
le
e
ic
in

fe
bl
ha

tio
he
e
-
ci
o
y
m

een
the
nd
el,

The

eak
yze
ns-
the

r-

the
-
ant
-

the
ers
nsi-

t
l

Discrete velocity kinetic models have been studied int
sively in recent years because they provide a conven
framework for both numerical simulations and analytic
treatment of complex phenomena. In the simplest o
dimensional model a ‘‘particle’’ has the velocity fluctuatin
with a characteristic relaxation timet between two valuesv
and2v. This is the continuous-space version of a persist
random walk leading to the telegrapher’s equation@1#. The
model has been applied in many different fields includ
thermodynamics@2#, solid state physics@3,4#, diffusion of
light in turbid media@5#, quantum mechanics@6#, tunneling
diffusion @7#, and dispersion of particles suspended in flu
@8#. A subject of recent interest was transport in the prese
of traps. In continuous phase space the problem is very
ficult to solve for arbitrary damping. Enormous literature
the trapping problem addresses mainly the case of Brow
motion in the strong damping limit, when inertial effects a
completely washed out, and the reduced distribution func
~for position only! is governed by the Smoluchowski equ
tion. This approximation leads to underestimated results
the survival probability since it implies that a particle
trapped whenever it reaches a trapping site, while a m
general absorbing boundary condition involves only partic
moving with the appropriate velocity. Discretization of th
velocity space leads to a couple of evolution equations wh
are more suitable for analytical treatment than the underly
Fokker-Planck equation while preserving the essential
tures of the problem. Probably the first exactly solva
model of transport with traps in discrete velocity space
been analyzed by Weiss@9#. More recently, Masoliveret al.
@10# gave a detailed analysis of the telegrapher’s equa
subject to a variety of boundary conditions including t
absorbing one. Bicout and Szabo@11# found the first passag
time distribution as a function of initial velocity and dis
cussed also a generalized model with more than two velo
states. In all these studies only unbiased transport with
external forces had been considered. The possible wa
incorporate external potential into the model is to assu
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that the external field induces additional transitions betw
two velocity states in such a way that the momentum and
field at any point would be connected by Newton’s seco
law. This is a particular case of the more general mod
explored by Masoliver and Weiss@12#, in which a particle
spends more time in one of the states than in the other.
scheme has been used recently in Ref.@3# in the specific
context of the problem about stationary response in a w
alternating field. The aim of the present paper is to anal
nonstationary solutions of this model for the cases of tra
port on an unbounded line and on a semi-infinite line in
presence of a single trap located at the origin.

The basic equations of the two velocity model with exte
nal potential are the following:

] f 1

]t
52v

] f 1

]x
2

f 12 f 2

2t
1

F

2mv
f , ~1!

] f 2

]t
5v

] f 2

]x
1

f 12 f 2

2t
2

F

2mv
f . ~2!

Here f 6(x,t) are the probability densities of the particle atx,
at time t, with velocity 6v, f (x,t)5 f 11 f 2 is the total
probability density, andF(x) is an external force which is
assumed to be time independent. The second terms in
right-hand sides of Eqs.~1! and~2! describe stochastic tran
sitions between two velocity states with the rate const
1/2t. It will be shown thatt is exactly the momentum relax
ation time, and therefore parameter 1/t plays in the model
essentially the same role as the damping constant in
Langevin equation and in the corresponding Klein-Kram
equation. The last terms represent the field induced tra
tions (d f6/dt)F56F f /(2mv). It can be derived under the
assumption that the local momentum densityp(x,t)
5mv( f 12 f 2) satisfies Newton’s equation (dp/dt)F
5mv@(d f1/dt)F2(d f2/dt)F#5F f , and taking into accoun
that (d f1/dt)F52(d f2/dt)F . The relation with the mode
of Masoliver and Weiss@12# is evident from the fact that the
3207 ©2000 The American Physical Society
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3208 PRE 61BRIEF REPORTS
last two terms in Eqs.~1! and~2! can be written in the form
7 f 1/2t16 f 2/2t2 , where 1/2t651/2t7F/2mv. We will
demonstrate below that this is a reasonable way to inco
rate dynamics into the two velocity model~see also Ref.@3#!.
At this point, however, one can see that the model has
inherent restriction because the above derivation implies
both of the states are not empty. It is easy to guess that
condition does not hold automatically. In fact, in our simp
fied scheme, field-induced transitions, tending to deplete
of the states, are proportional to the total local density rat
than to the population of particular states. Therefore,
must worry that sooner or later the force will complete
deplete one of the states. On the other hand, stochastic
sitions tend to equate the populations of states, and one
anticipate that the state populations will always be positiv
the frequency of stochastic transitions 1/t is sufficiently
large. Throughout the paper the inequality

j[
uFut
mv

,1 ~3!

will be assumed to hold. It will be shown that at least for
linear potential this condition guarantees the positivenes
distribution functionsf 6(x,t), provided that initially both
states are filled with the same probabilities. We will sho
that in the case of large damping 1/t@uFu/mv (j!1) the
model leads in the long time limit to the same result as
Smoluchowski equation. Fortunately, inequality~3! does not
put constraints that are too strong, but cover also the m
interesting regime of moderate damping (j is less but com-
parable with 1! when inertial effects cannot be ignored.

It is easy to obtain from Eqs.~1! and ~2! the following
equation for the total distribution functionf 5 f 11 f 2:

]2f

]t2
1

1

t

] f

dt
5v2

]2f

]x2
2

]

]x S F

m
f D , ~4!

which reduces to the telegrapher’s equation ifF52dU/dx
50. In the stationary state the solution of this equation
given by the Boltzmann distributionf 5 f 0exp@2U(x)/(kT)# if
we identify v with the thermal velocityv th5AkT/m.

Using the transformation

f ~x,t !5w~x,t !expS 2
t

2t
1

1

2mv2Ex0

x

dxF~x!D , ~5!

Eq. ~4! can be somewhat simplified:

]2w

]t2
5v2

]2w

]x2
1g~x!w, ~6!

g~x!5
1

4t2
2

F2

4m2v2
2

1

2m

dF

dx
. ~7!

For many physical applications the appropriate init
conditions can be written in the form

f 6~x,0!5
1

2
d~x2x0!, ~8!
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] f 6~x,0!

]t
57

v
2

dd~x2x0!

dx
6

F~x0!

2mv
d~x2x0!. ~9!

Here the first equation reflects the assumption that initia
the particle is located atx0 with equal probability to be in
each of two states. The second equation follows from
first one and the requirement that the functionsf 6(x,t) ini-
tially satisfy Eqs.~1! and ~2!. The initial conditions for the
total distribution functionf (x,t) and for the functionw(x,t)
will be, respectively, the following:

f ~x,0!5d~x2x0!,
] f ~x,0!

]t
50, ~10!

w~x,0!5d~x2x0!,
]w~x,0!

]t
5

1

2t
d~x2x0! ~11!

@we identify the arbitrary lower limit of the integral in Eq
~5! with the initial coordinatex0 of the particle#.

Let us consider first the transport in an unbounded o
dimensional space in a field of constant forceF. In this case
the functiong(x) @Eq. ~7!# becomes a constant

G25
1

4t2
2

F

~2mv !2
5

12j2

4t2
, ~12!

which is positive due to assumption~3!. Then Eq.~6! for
w(x,t) has the form of the modified telegrapher’s equati
whose solution is well known~see, e.g., Ref.@13#!. Using
boundary conditions~11! and turning back fromw(x,t) to
the distribution function, we have

f ~x,t !5expS 2
t

2t
1

FX

2mv2D @w1~X,t !1w2~X,t !

1w3~X,t !#, ~13!

where

w1~X,t !5@d~X2vt !1d~X1vt !#/2,

w2~X,t !5
1

4vt
I 0S G

v
Av2t22X2DQ~vt2uXu!,

w3~X,t !5
Gt

2Av2t22X2
I 1S G

v
Av2t22X2DQ~vt2uXu!,

~14!

X5x2x0 , I 0(z) and I 1(z) are the modified Bessel func
tions, andQ(z) is the Heaviside step function. If the damp
ing is strong (j!1), the function f (x,t) in the long-time
limit ( t@t,vt@X) behaves asymptotically exactly as a s
lution of the Smoluchowski equation for diffusion in a fie
of constant force:

f ~x,t !'
1

A4pDt
expS 2

~X2Vdt !2

4Dt D , ~15!

whereD5tv2 is the diffusion coefficient, andVd5Ft/m is
the drift velocity.
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It can be seen from Eqs.~1! and ~2! that the momentum
densityp(x,t)5mv( f 12 f 2) is connected withf by the con-
tinuity equation] f /]t1m21]p/]x50 and satisfies

]2p

]t2
1

1

t

]p

dt
5v2

]2p

]x2
2

F~x!

m

]p

]x
~16!

as long as the force does not depend on time. Because
equation and Eq.~4! for f 5 f 11 f 2 have different forms,
generally there is no way to write down uncoupled equati
separately forf 1 and f 2. However, for the caseF5const
such decomposition is possible:

]2f 6

]t2
1

1

t

] f 6

dt
5v2

]2f 6

]x2
2

F

m

] f 6

]x
. ~17!

These equation can be solved using relation~5! for the trans-
formation of the functionsf 1 and f 2 through the new func-
tions w1 andw2,

f 65w6exp~2t/2t1FX/2mv2!, ~18!

and taking into account that the initial conditions for t
functionsw6 are

w6~x,0!5
1

2
d~X!,

]w6~x,0!

]t
57

v
2

expS 2
FX

2mv2D d8~X!1S 1

4t
6

F

2mv D d~X!.

~19!

The corresponding solutions have the following form:

f 65exp~2t/2t1FX/2mv2!~w1
61w2

61w3
6!,

w1
6~X,t !5@d~X2vt !1d~X1vt !#/4, ~20!

w2
6~X,t !5

1

8v S 1

t
6

F

mv D I 0S G

v
Av2t22X2DQ~vt2uXu!,

w3
6~X,t !5

Gt

4Av2t22X2 S 16
X

vt D I 1S G

v
Av2t22X2D

3Q~vt2uXu!. ~21!

One can see thatf 6 are always positive since we assumej
,1. For the average velocityV(t) we have

V~ t !5vE dx@ f 1~x,t !2 f 2~x,t !#

5
F

4mvE2vt

vt

dX

3expS 2
t

2t
1

FX

2mv2D I 0S G

v
Av2t22X2D . ~22!

Instead of calculating this integral, it is much easier to der
from Eq. ~16! the equation
his

s

e

V~ t !91~1/t!V~ t !850 ~23!

and to solve it with initial conditionsV(t50)50 , and
V8(t50)5F/m5Vd /t:

V~ t !5Vd~12e2t/t!. ~24!

This result can be easily generalized for the case of nonz
initial velocity V(t50)5V0. The corresponding initial con
ditions for the functionsf 6(x,t) are the following:

f 6~x,0!5a6d~x2x0!, ~25!

] f 6~x,0!

]t
57a6v

dd~x2x0!

dx
7S a12a2

2t
2

F

2mv D
3d~x2x0!, ~26!

where parametersa6 satisfy the relationsa11a251 and
a12a25V0 /v. Using Eq.~26! one can find the second ini
tial condition for the average velocity:V8(t50)5(Vd
2V0)/t. Then the solution of Eq.~23! has the expectable
form

V~ t !5Vd1e2t/t~V02Vd!. ~27!

Let us consider now the process in the presence of
trapping point located atx50, provided that initially the
particle is to the right from the trap, i.e.,x0.0. In this case
the appropriate boundary condition is

f 1~0,t !50, ~28!

which implies that there is no reflection from the pointx
50. As we have seen, in the presence of the external fi
generally there is no way to obtain uncoupled equatio
separately forf 1 and f 2. We concentrate here on the ca
F5const when such decomposition is possible, and calc
tions can be carried out in the manner of Masoliveret al.
@10#. Just as for the case of a freely diffusing particle, o
can consider only the equation forf 1 since according to Eq
~1! f 2 may be found fromf 1 through the relation

f 2~x,t !5F] f 1

]t
1v

] f 1

]x
1 f 1S 1

2t
2

F

2mv D G S 1

2t
1

F

2mv D 21

.

~29!

Using again transformation~18!, we come to the following
equations for the one-trap problem:

]2w1

]t2
5v2

]2w1

]x2
1G2w1, ~30!

w25S ]w1

]t
1v

]w1

]x D S 1

2t
1

F

2mv D 21

~31!

with the initial conditions ~19! and boundary conditions
w1(0,t)50. Using a combined Fourier-sine and Lapla
transform

ŵ1~k,s!5E
0

`

dxE
0

`

dt sin~kx!exp~2st!w1~x,t ! ~32!
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we get

ŵ1~k,s!5
~s1R!sin~kx0!1kv cos~kx0!

2~s21v2k22G2!
, ~33!

whereG is defined by Eq.~12! and

R5
1

2t
1

F

2mv
. ~34!

Making the inverse Fourier transform, one can obtain
Laplace transformw̃1(x,s)5*0

`dt exp(2st)w1(x,t):

w̃1~x,s!5
b~s!61

4v
exp@6%~s!~x02x!#

2
b~s!21

4v
exp@2%~s!~x01x!#. ~35!

Taking into account relation~29!, we find the Laplace trans
form for the ‘‘total’’ function w5w11w2:

w̃~x,s!52
1

2R
d~x2x0!1

b~s!61

4v S 11
s7r~s!v

R D
3exp@6%~s!~x02x!#2

b~s!21

4v S 11
s2r~s!v

R D
3exp@2%~s!~x01x!#. ~36!

In Eqs. ~35! and ~36! the upper and lower signs correspo
to the regionsx.x0 and x,x0, respectively, and function
%(s) andb(s) are defined by

%~s!5
1

v
As22G2, b~s!5

s1R

As22G2
. ~37!

Using Eq. ~5!, the Laplace transform for the distributio
function f (x,t) can be written as

f̃ ~x,s!5exp~FX/2mv2!w̃S x,s1
1

2t D , ~38!

wherew̃(x,s) is given by Eq.~36!. One can perform inver-
sion of this equation in terms of known functions, but t
result is somewhat complicated and is therefore omitted.
stead we concentrate on the analysis of survival probab
P(t)5*0

` f (x,t)dx . In contrast with freely diffusing on a
line particle, the functionP(t) in the presence of an extern
field has a nonzero long-time limitP` provided the force is
directed away from the trap. In this case integration of E
~38! gives for the Laplace transform of the survival probab
ity P̃(s) the following asymptotic form:

P̃~s!5
2t

j2~11j!

11j2exp@2Fx0 /~mv2!#

211A114ts/j2
, ~39!
alk
e

-
ty

.

which holds for smalls. SinceP`5 lims→0s P̃(s), we finally
have

P`512
exp@2x0Vd /D#

11j
, ~40!

where, as in Eq.~15!, D5tv2 andVd5Ft/m.
In the strong friction limit the problem is reduced to sol

ing the Smoluchowski equation

] f

]t
5D

]2f

]x2
2Vd

] f

]x
~41!

with initial condition f (x,0)5d(x2x0) and the boundary
condition f (0,t)50. The corresponding solution is

f ~x,t !5expS 2
tVd

2

4D
1

~x2x0!Vd

2D D
3@ f 0~x,tux0!2 f 0~x,tu2x0!#, ~42!

where f 0(x,tux0)5(1/A4pDt)exp@2(x2x0)
2/(4Dt)#. Re-

spectively, for the escape probability one can findP`51
2exp@2x0Vd /D#. Comparison of this result with Eq.~40!
shows that in the diffusion~overdamped! approximation the
probability of trapping (12P`) is overestimated by the fac
tor 11j511vd /v, while its dependence on initial positio
and external field is the same as for the case of two veloc
stochastic process at moderate damping.

The presented discrete kinetic model is probably the s
plest one to treat random motion in an external field beyo
the strong damping approximation. It can be improved a
generalized in many different ways~more than two velocity
states, two- and three-dimensional space, etc.!. An extension
of presented consideration on the case of nonlinear pote
would be of much interest because it could give more insi
into many important problems requiring a solution of t
Klein-Kramers equation in the presence of absorbing bou
aries ~escape from a metastable state, transport in biom
ecules, etc.!. It is not certain, however, that the conditionj
,1 guarantees the positiveness of the state populations
an arbitrary potential. Further work is needed to clarify th
question. For the casej.1 the presented model leads to th
modified Klein-Gordon equations for the functionsw6(x).
Its solutions take an unphysical negative values at timet
*tF5mv/F. One should note, however, that the model c
be regarded as a reasonable approximation even in the
derdamped regime (j@1) for processes with a characterist
time of less thantF @3#
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